
Multi-level Partition of Unity on Differentiable Moving Particles
JINJIN HE, Dartmouth College, USA
TAIYUAN ZHANG, Dartmouth College, USA
HIROKI KOBAYASHI, Toyota Central RD Labs., Inc., Japan
ATSUSHI KAWAMOTO, Toyota Central RD Labs., Inc., Japan
YUQING ZHOU, Toyota Research Institute of North America, United States of America
TSUYOSHI NOMURA, Toyota Central RD Labs., Inc., Japan
BO ZHU, Georgia Institute of Technology, United States of America

A
da

pt
iv

e
SD

F
R

ec
on

st
ru

ct
io

n

Params: 1.81 M

Params: 1.48 M

D
iff

er
en

tia
bl

e
M

od
el

in
g

an
d

R
en

de
ri

ng

Differentiable SDF Optimization / Inverse Rendering

Dynamic Surface TrackingParticle Num: 105992

Particle Num: 129296

Mean Curvature Flow Non-manifold Surface

Fig. 1. We present a novel adaptive implicit representation based on differentiable particles with Multi-level Partition of Unity (MPU). Our method represents
objects with complex geometries and topologies, with applications in adaptive SDF reconstruction, inverse rendering, and dynamic interface tracing.

We introduce a differentiable moving particle representation based on the
multi-level partition of unity (MPU) to represent dynamic implicit geome-
tries. At the core of our representation are two groups of particles, named
feature particles and sample particles, which can move in space and produce
dynamic surfaces according to external velocity fields or optimization gradi-
ents. These two particle groups iteratively guide and correct each other by
alternating their roles as inputs and outputs. Each feature particle carries
a set of coefficients for a local quadratic patch. These particle patches are

Authors’ addresses: Jinjin He, jinjin.he.gr@dartmouth.edu, Dartmouth College,
Hanover, New Hampshire, USA; Taiyuan Zhang, taiyuan.zhang.gr@dartmouth.edu,
Dartmouth College, Hanover, New Hampshire, USA; Hiroki Kobayashi, hiroki.
kobayashi@mosk.tytlabs.co.jp, Toyota Central RD Labs., Inc., Nagakute, Aichi, Japan;
Atsushi Kawamoto, atskwmt@mosk.tytlabs.co.jp, Toyota Central RD Labs., Inc., Na-
gakute, Aichi, Japan; Yuqing Zhou, yuqing.zhou@toyota.com, Toyota Research Institute
of North America, Ann Arbor, Michigan, United States of America; Tsuyoshi Nomura,
nomu2@mosk.tytlabs.co.jp, Toyota Central RD Labs., Inc., Nagakute, Aichi, Japan; Bo
Zhu, bo.zhu@gatech.edu, Georgia Institute of Technology, Atlanta, Georgia, United
States of America.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
0730-0301/2024/12-ART $15.00
https://doi.org/10.1145/3687989

assembled with partition-of-unity weights to derive a continuous implicit
global shape. Each sampling particle carries its position and orientation,
serving as dense surface samples for optimization tasks. Based on these mov-
ing particles, we develop a fully differentiable framework to infer and evolve
highly detailed implicit geometries, enhanced by a multi-level background
grid for particle adaptivity, across different inverse tasks. We demonstrated
the efficacy of our representation through various benchmark comparisons
with state-of-the-art neural representations, achieving lower memory con-
sumption, fewer training iterations, and orders of magnitude higher accuracy
in handling topologically complex objects and dynamic tracking tasks.

CCS Concepts: • Computing methodologies→ Point-based models;

Additional Key Words and Phrases: Multi-Level Partition of Unity, Differen-
tiable Particles, Inverse Rendering, Dynamic Interface Tracking

ACM Reference Format:
Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing
Zhou, Tsuyoshi Nomura, and Bo Zhu. 2024. Multi-level Partition of Unity on
Differentiable Moving Particles. ACM Trans. Graph. 43, 6 (December 2024),
21 pages. https://doi.org/10.1145/3687989

1 INTRODUCTION
Developing efficient data structures and representations to charac-
terize dynamic implicit geometries is one of the central research
topics in computer graphics and computational physics. Dating back

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

https://doi.org/10.1145/3687989
https://doi.org/10.1145/3687989

2 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

to earlier years, the introduction of level sets [Osher and Sethian
1988] and adaptively sampled distance fields [Frisken et al. 2000]
initiated the adoption of implicit signed distance functions (SDF)
to feature complex object geometries and capture their dynamic
motions. Traditionally, these SDF fields were discretized on a back-
ground grid to characterize the implicit geometry, later enhanced
with adaptive techniques such as octrees [Frisken et al. 2000], and
more recently, equipped with neural representations like instant
neural graphics primitives (I-NGP) [Müller et al. 2022]. One of the
main limitations of a grid-based representation (or a hybrid neural
representation) is its inherent isotropy, which makes it difficult to
economically depict anisotropic features such as very small furrows,
thin beams and filaments, and non-manifold foam structures.

Particle-based approaches offer a fresh perspective for addressing
the challenges related to complex and dynamic implicit geome-
try. Thanks to the Lagrangian nature of particles, particle-based
representations exhibit inherent potential to accommodate spa-
tial adaptivity and temporal coherence. This potential has been
demonstrated by recent groundbreaking work in 3D Gaussian splat-
ting [Kerbl et al. 2023] and their dynamic extensions [Luiten et al.
2024], which focus on reconstructing (particularly anisotropic) radi-
ance fields based on spherical harmonics stored on a set of moving
particles. In the realm of implicit geometry representation, parti-
cles have historically played an important role. On the one hand,
extensive literature has been devoted to point-set surface recon-
struction in the 3D geometry reconstruction, including notable
works such as Moving Least Squares (MLS) [Levin 2004], Point Set
Surface (PSS) [Alexa et al. 2001], and Algebraic Point Set Surface
(APSS) [Guennebaud and Gross 2007]; on the other hand, the par-
ticle level set (PLS) method [Hieber and Koumoutsakos 2005] and
its many variations (e.g., Adaptive PLS [Ianniello and Di Mascio
2010], Oriented PLS [Vartdal and Bøckmann 2013] and One-layer
PLS [Zhao et al. 2018]) have been crucial for tracking the evolu-
tion of dynamic implicit geometry in various physics simulation
applications. Particles play different roles in different cases, either
as material points that carry physical quantities or as correction
information carriers used to adjust the SDF on a background grid.

In this paper, we further explore the potential of using particles to
facilitate implicit, dynamic geometry representation by introducing
a moving particle representation based on the multi-level partition
of unity (MPU) scheme [Ohtake et al. 2005]. The key idea of our
representation is to devise two particle systems, including a sparse
set of feature particles and a dense set of sample particles, which can
iteratively guide each other during the dynamic evolution of an in-
terface driven by external velocities or optimization gradients. These
two groups of particles play different roles during optimization. On
the one hand, each feature particle carries a quadratic surface patch,
which is then stitched together using MPU coefficients to form a
continuous and smooth implicit surface. On the other hand, each
sample particle carries its position and orientation; many sample
particles serve as data input to optimize the position and parameters
of the feature particles for an implicit MPU surface.

For implicit surface construction, tracking, and optimization tasks,
we combine moving particles and MPU to leverage the computa-
tional merits from both sides. First, using particles inherently en-
ables inverse differentiation, thanks to the ease of calculating the

derivative of each particle’s position as well as its quadratic coef-
ficients with respect to optimization objectives such as rendering
pixel colors or target distance field values. This benefit is particularly
attractive when compared to a neural approach (e.g., I-NGP [Müller
et al. 2022]), for the ease of implementation and the efficiency of de-
rivative calculation. Second, using MPU allows each particle to char-
acterize high-order geometries that are more complex than a linear
approximation (e.g., SDF value). This local expressiveness enables
our representation to feature complex surfaces even with a very
sparse usage of particles in space (in contrast to a dense narrow
band of particles such as in particle level sets), opening up further
designs of surface adaptivity that remain scarcely explored in the
implicit geometry community.
We carried out a comprehensive set of benchmark tests to vali-

date the performance of both our particle MPU representation and
our differentiable pipeline. Compared to other state-of-the-art meth-
ods, our approach demonstrates efficacy with low computational
cost (implicit surface reconstruction), robustness (differentiable SDF
optimization), rapid training (inverse rendering), and heightened
expressiveness (reconstructed/inversed surface quality). Figure 2
illustrates a differentiable optimization process using our pipeline.

Our main contributions can be summarized as:

(1) A novel dual particle representation consisting of feature
particles and sample particles based on MPU for adaptive
implicit geometry representation;

(2) A fully differentiable framework based on moving particles
to accommodate inverse rendering, modeling, and dynamic
tracking applications;

(3) A particle reseeding/deletion/projection mechanism to enable
surface adaptivity;

(4) An extension to handle non-manifold geometries with un-
signed distance fields.

2 RELATED WORK
Implicit Geometry Representations. Implicit geometry representa-

tions such as Moving Least Squares (MLS) Surfaces and Signed Dis-
tance Functions (SDF) have been widely studied in computer graph-
ics [Bloomenthal and Bajaj 1997]. Due to their expensive visualiza-
tion, especially for complex geometries, developing efficient adap-
tive implicit representations has gained much attention. Leveraging
piecewise quadratic functions and the partition of unity, Ohtake
et al. [2005] introduced a novel shape representation. Adaptivity
in moving least squares surfaces was explored by Dey and Sun
[2005] and Huang et al. [2010]. For adaptive SDF generation and iso-
surface meshing, notable contributions have been seen by Frisken
et al. [2000], Akkouche and Galin [2001], Varadhan et al. [2004], Az-
ernikov and Fischer [2005], Koschier et al. [2017], etc. In recent years,
machine learning, particularly deep learning, has garnered attention
for its potential to represent 3D shapes effectively. DeepSDF [Park
et al. 2019a], DeepIMLS [Liu et al. 2021], and NGLoD [Takikawa
et al. 2021] demonstrated the capacity to learn implicit representa-
tions from SDF and MLS surfaces. The work by Müller et al. [2022]
innovatively reduced the computational cost of neural networks by
augmenting a small neural network with a multi-resolution hash
table of trainable feature vectors. Chen et al. [2023] departed from

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 3

Initialization Optimization with differentiable moving particles Result

Particle nums: 1160 1974 2471 3543 7678

Fig. 2. This figure demonstrates the evolution of feature particles during the differentiable optimization process from the initial sphere to the target mesh with
five intermediate states. Particles with deeper color have smaller radii that characterize smaller patches/regions.

fixed neural features on grid nodes and instead employed general
radial bases with flexible kernel position and shape. Our method
employs particles as the basic unit to represent implicit geometries
to achieve compute and memory efficiency in dynamic tasks.

Multi-level Partition of Unity. The MPU method [Ohtake et al.
2005] can reconstruct an implicit surface with locally estimated qua-
dratic functions given an oriented point set. With adaptive octree-
based partition, points are approximated by quadric functions to
capture local features and use the partition of unity to obtain global
implicit functions. Attaching the estimated primitives to points in-
stead of cells, Xiao [2011] introduced multi-level partition of unity
algebraic point set surfaces with an efficient projection operator. Li
et al. [2014] presented a new robust MPU method with a new error
metric, controlling the approximation error between the surface and
vertices of the triangle. Hu et al. [2010] presented a facial localization
method using MPU implicit. Combining MPU and dynamic parti-
cle systems, Chen et al. [2018] can generate smooth and adaptive
meshes from medical image datasets. Besides the geometry-related
tasks, MPU can be applied to solve PDEs by developing multi-level
particle partition of unity method as a mesh-free generalization of
FEM [Schweitzer 2009, 2011]. Our proposed representation can be
viewed as a moving-particle adaptation of the traditional MPU. Pro-
jecting and constraining feature particles onto the surface demon-
strates advantages in adapting surface features and differentiating
inverse modeling and rendering.

Particle-based Methods. Particle-based methods have always been
highly valued due to flexibility compared to grid-based methods.
Taking advantage of particles, various approaches achieved bet-
ter results compared to the original grid-based structure like PLS
methods [Enright et al. 2002; Ianniello and Di Mascio 2010], MPU-
APSS [Xiao 2011], particle-based anisotropic surfacemeshing [Zhong
et al. 2013], Particle-NeRF [Abou-Chakra et al. 2023], NeuralRBF
[Chen et al. 2023], etc. Leveraging point set, Pauly et al. [2006]
devised a point-based multi-scale surface representation, Duran-
leau et al. [2008] introduced a multi-resolution representation for
point-set surfaces which is slightly larger than the original point
set, Huang et al. [2019] can reconstruct an implicit surface from an
un-oriented point set using global smoothness energy, Mercier et al.
[2022] presented a simple, fast, and smooth scheme to approximate

Algebraic Point Set Surfaces using non-compact kernels. With the
great success of 3D Gaussian Splatting [Kerbl et al. 2023], particles
carrying feature vectors have shown huge potential to obtain im-
provement on multiple tasks Jiang et al. [2024]; Xie et al. [2023].
Beyond geometry representations, particle-based methods have
shown their advantages in simulation Becker and Teschner [2007];
Bell et al. [2005]; Deng et al. [2022] and rendering [Sakamoto et al.
2007; Tanaka et al. 2012]. Our method further squeezes the potential
of the particle-based structure by introducing radius adaptivity and
parameters to characterize complicated geometry.

Differentiable Geometry and Rendering. In recent times, there
has been a growing interest in the research community in mak-
ing traditional tasks differentiable, leveraging the success of ma-
chine learning. In the realm of differentiable isosurface extraction,
MeshSDF [Remelli et al. 2020], Shape as Points [Peng et al. 2021], and
FlexiCubes [Shen et al. 2023] improved isosurface representation for
gradient-based optimizing unknown meshes concerning geometric,
visual, or even physical attributes. Sellán et al. [2023] treated each
SDF sample as a spherical region and employed an energy-based ap-
proach for under-sampling SDF reconstruction task. In the domain
of differentiable rendering, Soft rasterizer [Liu et al. 2019], SDFD-
iff [Jiang et al. 2020], differentiable surface rendering [Cole et al.
2021], differentiable surface splatting [Yifan et al. 2019] have ex-
plored various differentiable rendering algorithms. Exploring other
differentiable geometry processing tasks, Rakotosaona et al. [2021]
presented an approach for optimizing triangle meshes both in 2D
and on surfaces. Noteworthy work on surface evolution by [Mehta
et al. 2022, 2023; Novello et al. 2023] delves into the use of smooth
neural networks for modeling dynamic variations of implicit sur-
faces governed by the level set equation. Our method aligns with
this trend and specifically focuses on surface evolution and dy-
namic surface tracking, capitalizing on the advantages offered by a
particle-based representation in dynamic scenarios.

3 BACKGROUND
Implicit Surface. We define an implicit geometry 𝑆 as the zero

level set of an implicit function 𝑓 (x) that takes a point x as input
and returns its signed distance value.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

4 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

�(��)

�(��+1)

Feature
Particles Sample

Particles

Position �
Velocity �
Normal �
Feature Vector

Local Geometry or
Physical Proerties

 {�, �, �, …} MPU

Global Geometry or
Physical Proerties

 {�, �, �, …}

Fig. 3. Feature particles carry parameters encoding properties throughMPU,
while sample particles densely capture surface details. Parameters(feature
vectors) carried by each feature particle encode local surface information
of MPU. 𝑆 (𝑡𝑛) and 𝑆 (𝑡𝑛+1) illustrate the evolution of particles driven by
gradient flow from time step 𝑛 to 𝑛 + 1.

Partition of Unity. We define an implicit geometry with Partition
of Unity [Ohtake et al. 2005] by integrating a set of locally defined
patches {Ω𝑖 }𝑛𝑖=1 into a global approximation Ω. Each patch Ω𝑖 has a
center c𝑖 and a radius ℎ𝑖 . Specifically, we approximate 𝑓 (𝑥) defined
on Ω as a linear combination of implicit functions 𝑓𝑖 (𝑥) defined on
each local patch Ω𝑖 with weights 𝜑𝑖 :

𝑓 (x) =
𝑛∑︁
𝑖=1

𝜑𝑖 (x) 𝑓𝑖 (x) . (1)

The weights satisfy the partition of unity property
∑𝑛
𝑖=1 𝜑𝑖 = 1.

Following the Shepard’s method [Franke and Nielson 1980], given a
set of non-negative compactly supported functions {𝑤𝑖 }𝑛𝑖=1, the par-

tition of unity functions𝜑𝑖 can be constructed as,𝜑𝑖 (x) =
𝑤𝑖 (x)∑𝑛
𝑗=1𝑤 𝑗 (x)

.

We use the quadratic B-spline functions to calculate each {𝑤𝑖 } as:

𝑤𝑖 (x) =

1 − 3𝑟𝑖 (x)2 , 0 ≤ 𝑟𝑖 (x) ≤

1
33

2
(1 − 𝑟𝑖 (x))2 ,

1
3
≤ 𝑟𝑖 (x) ≤ 1

0 , otherwise

𝑟𝑖 (x) =
|x − c𝑖 |
ℎ𝑖

,

(2)

where c𝑖 and ℎ𝑖 are the center and radius of each patch Ω𝑖 .

4 GEOMETRIC REPRESENTATION

4.1 Data Structure
Our geometric representation consists of two sets of particles —
feature particles for patch representation and sample particles
for patch sampling. Firstly, we employ a set of feature particles P𝐹
with variable radii that are sparsely sampled on the target surface.
Each feature particle characterizes a local quadratic patch with
14 parameters(10 quadratic parameters + 3 position + 1 radius).
Secondly, we utilize another set of oriented sample particles P𝑆 that
are densely sampled on the target surface. Next, we will elaborate
on their definition and construction.

Feature Particles. We employ a sparse set of feature particlesP𝐹 to
represent moving patches around an implicit surface. Each feature
particle carries a particle center c ∈ R3, a support radius h, and a
set of parameters 𝜷 = [𝛽0, 𝛽1, · · · , 𝛽𝑙]⊤ defining the local quadratic
patch. In particular, 𝛽 is used to define a quadratic polynomial as:

F (x) = b(x − c)⊤𝜷, (3)

where b(x) serves as the basis polynomial for the quadratic surface.
In our problem,we define b as b(x) =

[
𝑥2, 𝑦2, 𝑧2, 𝑥𝑦,𝑦𝑧, 𝑧𝑥, 𝑥,𝑦, 𝑧, 1

]⊤
with 𝜷 as a 10-dimensional vector. Here, the function F is used as
𝑓𝑖 to define the local quadratic patch in Eq.(1). Eq.(3) can be further
used to calculate the normal vector of the local patch as:

n =
𝜕F
𝜕x

=
𝜕b⊤

𝜕x
𝛽. (4)

Similarly, we can also derive the surface curvature as:

𝜅 = ∇ · ∇b⊤𝛽
|∇b⊤𝛽 | . (5)

The detailed derivation is provided in Appendix D.

Sample Particles. We maintain a dense set of sample particles on
the implicit surface to facilitate surface approximation and surface
evolution. Each sample particle carries a position and a normal
vector, which can be taken as input (for reconstruction tasks) or
calculated using Eq. (3) and Eq. (4) (for dynamic tracking or inverse
modeling tasks).

Feature-Sample Particle Interaction. Feature and sample particles
alternately guide and correct each other in various tasks. On the
one hand, sample particles serve as inputs for implicit surface re-
construction, resulting in the construction of feature particles as
outputs. On the other hand, the implicit MPU surface produced by
feature particles acts as the reference surface, guiding the generation
of new sample particles in space. This process is illustrated in Fig-
ure 3. This mutual-correction mechanism is particularly important
in tasks involving dynamic surfaces, such as interface tracking or
inverse modeling, which we will elaborate on in Sec. 6 and Sec. 7.

4.2 Geometric Fitting
With the feature particles and sample particles defined in Sec. 4.1,
we describe the geometric fitting process to calculate the parameters
carried on each feature particle by taking the sample particles as
input. In particular, we will optimize both the parameters and the
locations of each feature particle to fit an implicit geometry sampled
by sample particles. We describe the processes as below.

Parameter Fitting. We calculate the values of 𝛽 for each feature
particle by minimizing an objective L𝜷 as:

min
𝜷
L𝜷 =

1∑
p∈N

𝑤 (p)
∑︁
p∈N

𝑤 (p) 𝑓 (p)2 + 1
𝑚

𝑚∑︁
𝑖=1
(𝑓 (q𝑖) − 𝐷 (q𝑖))2 ,

(6)
where q𝑖 represents training data points with signed distance values
interpolated from sample particles, 𝐷 (q𝑖) denotes the distance func-
tion interpolated from the sample particles and their normals, and
𝑚 is the total number of training data points. The p are neighboring
sample particles around the feature particle and N denotes the set

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 5

Fig. 4. We present the optimization results minimizing L, with the target
function being a circle in 2D. The contours represent the implicit surface
and the boundary of feature particles. Left: randomly generated feature
particles. Right: optimized feature particles by minimizing Eq. 8.

of neighboring sample particles for the feature particle. Details on
obtaining the training data point q𝑖 and the distance function are
provided in Appendix B. The first term of Eq. (6) aims to optimize
the function’s value to 0 at each sample particle location, while the
second term seeks to make the function’s value at the training point
locations converge to their respective distance values.

Position Fitting. In addition to polynomial fitting, we aim to keep
the center of each 𝑃F as close to the surface as possible to represent
surface details and use fewer particles in the space. To achieve this,
we optimize c for each feature particle by minimizing the objective:

min
c
Lc =

𝑁F∑︁
𝑖=1
|𝑓𝑖 (c𝑖) |2, (7)

this loss function enables each feature particle’s position to converge
near the surface where𝑓𝑖 (c𝑖) = 0.

Total Loss. Thus, given input sample particles, we define the loss
as the combination Eq. (6) and Eq. (7) to optimize the feature parti-
cles’ parameters and positions:

min
𝜷,c
L = L𝜷 + Lc . (8)

Optimization. Weminimize Eq. (8) by separately optimizing Eq. (6)
using the Weighted Least Squares (WLS) method [Nealen 2004] and
Eq. (7) using the Newton projection method. We refer readers to
Appendix C for more implementation details of WLS. For Newton
projection, we take the following iteration for each feature particle
until 𝑓𝑖 (c𝑖) < 0.01Δc𝑖 :

c𝑡+1𝑖 = c𝑡𝑖 − 𝑓𝑖 (c
𝑡
𝑖)
∇𝑓𝑖 (c𝑡𝑖)
|∇𝑓𝑖 (c𝑡𝑖) |

. (9)

The local surface coefficients 𝛽 of the feature particles are updated
after each projection iteration.

In sum, we can minimize Eq. (8) by alternating between one-step
weighted least squares and one-step Newton projection. In Figure 4,
we randomly generate feature particles and obtain optimized c and
𝜷 feature particles using the described method.

5 ADAPTIVITY
In our dynamic tracking and inverse modeling pipelines, we reg-
ularly reinitialize the position of feature particles. For other tasks,

Fig. 5. Sparse grid activation is based on the presence of sample particles
and surface curvature. Left: 3D visualization. Right: 2D slice. Activated
cells are colored according to their layer index.

Generation Optimized Reconstruction

Fig. 6. Feature particles are generated according to the sparse grid and then
projected to the surface. After an additional fixing step, the resulting surface
can be reconstructed. Left: generated feature particles at the cell centers of
the sparse grid.Middle: projected and fixed feature particles. The particles’
radii are represented by a color gradient from red to blue, corresponding
to large to small sizes. Right: reconstructed surface colored by curvature
calculated from feature particles. The curvature increases as the color shifts
toward red.

such as surface reconstruction, the reinitialization happens at the
beginning of the algorithm. During reinitialization, we utilize a
sparse adaptive grid [Setaluri et al. 2014] to facilitate the placement
of feature particles with adaptive radii. Differing from a traditional
MPU [Ohtake et al. 2005], where the octree serves as data storage,
in our case, we use the octree as an adaptive spatial discretization
to guide the generation of particles (similar ideas can be seen in
Mercier et al. [2022]). In particular, we use the background grid as
an auxiliary structure during the reinitialization stage only to place
feature particles and maintain their distribution, ensuring that every
sample particle is covered by at least one feature particle. We will
elaborate the details of reinitialization as follows.

5.1 Feature Particle Reinitialization
Our feature particle reinitialization algorithm consists of two steps:
grid cell activation and particle generation. First, we construct a
hierarchy of sparse grids that adaptively cover the current implicit
surface sampled by the sample particles. Our adaptive sparse grid
has a structure similar to an Octree, and only the cells near the
surface are activated. Like Octree, we activate cells with varying
radii and layer them according to their radius. For example, cells
with the largest radius form the coarsest layer, while those with

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

6 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

Fixing

Fig. 7. By examining each activated cell, we add feature particles (colored
by deep blue after fixing) with corresponding grid radius to fix holes if there
are any isolated sample particles (colored by yellow).

the smallest radius form the finest layer. Then, we generate feature
particles with adaptive radii based on the activated cells in the grid
hierarchy.

ALGORITHM 1: Sparse gird activation
Input :Sample Particles p, Curvature Carried 𝜅𝑝 , Threshold 𝜀0,

Sparse Grid G, Finest Grid Number 𝐿0
Variable :Current Layer Number 𝐿
𝐿 ← 1
while 𝐿 ≤L0 do

foreach p do
Get grid G𝐿p𝑖 contains p𝑖
if 𝜅p𝑖 ≥ 𝜀0 then

if L == 1 then
Activate G𝐿p𝑖

end
Get coarser gird G𝐿−1p𝑖
foreach G𝐿𝑐 ∈ G𝐿−1p𝑖 ’s children do

Activate G𝐿𝑐
end

end
end
𝐿 ← 𝐿 + 1

end
foreach G do

if G𝑖 not contain a p then
Deactivate G𝑖

end
if 𝐿G𝑖 < 𝐿0 then

if Any G
𝐿G𝑖 +1
𝑐 ∈ G𝑖 ’s children is activated then

Deactivate G𝑖
end

end
end

Grid Cell Activation. For the grid cell activation stage, assuming
we are provided with a set of sample particles P𝑠 sampled from
an initial surface or the most recently evolved surface, the sparse

grid hierarchy is constructed based on these sample particles. To
address space efficiency concerns in a more adaptive manner, our
auxiliary sparse grid is constructed considering both the positions of
the sample particles and the surface’s curvature on these points. The
curvature of sample particles can be computed from the input mesh
or our representation. We demonstrate how to calculate curvature
from our feature particles in Appendix D.

Our activation algorithm iterates from coarse to fine grid layers.
The second panel of Fig. 8 illustrates this process. Starting with the
coarsest layer, we check each grid cell to determine if it contains
sample particles and whether the maximum surface curvature car-
ried on each sample particle in this cell exceeds a specified threshold
𝜀0,𝑚𝑎𝑥𝑝𝑖 ∈𝑛𝑜𝑑𝑒 𝜅𝑝𝑖 > 𝜀0. If both conditions are met, we activate the
cell and the surrounding cells from the same layer that are located
inside the coarser grid layer above. This process repeats iteratively
until the final fine layer is reached. After checking and activating all
grid cells in the current layer, we deactivate the parent grids from
the coarser layer above that contains activated cells in the current
layer. Also, during the iteration, some cells that do not contain a
sample particle may become activated. We will deactivate those
cells. We show the pseudo-code in Algorithm. 1.

A grid cell activation example is shown in Fig. 5, the sparse grid
cell is activated by sample particles, and from the 2D Slice we see
that our activation is both sparse in space and surface which is
different from an octree in Gibou’s survey [Gibou et al. 2018] and
particle level set [Enright et al. 2002] which are sparse in space but
dense on the surface.

Particle Generation. Upon activating the sparse grid cell, we gen-
erate a feature particle with a radius of ℎ𝑓 = 𝛼ℎ𝑐𝑒𝑙𝑙 within each
cell, where ℎ𝑐𝑒𝑙𝑙 is the length of the grid, and 𝛼 is a scaling variable
that we set it to 1.15 in the experiments. During the initialization or
re-initialization process, we assign a layer number to each feature
particle, indicating the cell layer from which the feature particle is
generated. Subsequently, we proceed feature particle fitting with a
fixing step which will be discussed later.

5.2 Hole Fixing
We conduct a hole-fixing step after feature particle fitting to prevent
holes on the surface due to the insufficient number of feature parti-
cles in local places. In particular, we will inspect each activated grid
cell to identify any sample particles that are not contained within a
feature particle. Subsequently, we will calculate the average position
of the miss-contained sample particles within this cell and add a
new feature particle at this position with a radius equal to half the
cell’s width. We iterate this process until every sample particle is
contained by at least one feature particle. Fig. 6 illustrates the gen-
eration of feature particles and the resulting projection. The right
of Fig. 6 shows the reconstruction result and colored curvature we
compute using MPU.
So far, we have successfully obtained adaptive feature particles

to reconstruct the implicit surface based on fixed sample particle
inputs. We outline our implicit surface reconstruction in Algorithm
2. Figure 9 shows the results of our implicit surface reconstruction
and the particle view (see Sec. 9.1 for more details). Next, we will
discuss our optimization pipeline with particle differentiation.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 7

1

2

3

Build Sparse GridGenerate Sample Particles

Construction

Generated Particles

Generation Optimization

Reconstruct Surface

Fig. 8. The surface reconstruction pipeline of our adaptive implicit representation. After obtaining sample particles, we first construct a sparse grid using local
curvature and position carried by particles. We then generate feature particles from the sparse grid and optimize their parameters.

GT

Ours

Feature
Particles

Fig. 9. Our Implicit surface reconstruction results of different shapes , different colors of feature particles represent different radii. The figure demonstrates
that our reconstructed structure is adaptive regarding both its spatial and surface details, capable of representing complex topologies and intricate surfaces.
The numbers of feature particles used to reconstruct these shapes vary from 1k to 30k.

6 DIFFERENTIATION
In differentiable optimization tasks, our objective often revolves
around minimizing a task-specific loss function, denoted as Ltask.
As shown in Fig. 10, throughout optimization, we generate an output
from the implicit surface based on our representation, correspond-
ing to the specified task. Subsequently, we evaluate the loss function
by comparing this output with the ground truth. Then, we back-
propagate gradients from Ltask to the underlying implicit surface
represented by our feature particles.

6.1 Gradient Flow

Mathematically, we evaluate the equation
𝜕L𝑡𝑎𝑠𝑘
𝜕𝜃

=
∑ 𝜕L𝑡𝑎𝑠𝑘

𝜕X
𝜕X
𝜕𝜃

,
where X is the output 3D points with specific information from
our implicit surface according to the task. For example, it could be

pixels transformed into 3D points for inverse rendering tasks or
sample particles for Chamfer distance optimization. Here, 𝜃 is the
parameter to optimize in our representation. In our experiment, 𝜃
includes the center c and quadratic parameter 𝜷 of feature particles.
We also need to obtain gradients on sample particles to optimize 𝜷 .

We use an automatic differentiation system to calculate gradi-
ents. Similar to NIE [Mehta et al. 2022], in the spirit of Lagrangian

advection, the gradient
𝜕L𝑡𝑎𝑠𝑘
𝜕𝑋

acts as instantaneous flow field V
on these points. We calculate a global velocity V using partition of
unity similar to Eq. (1) as:

V(x) =
𝑘∑︁
𝑖=1

𝜑 (x)V𝑖 , (10)

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

8 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

Export

Next frame PoU V

Surface
Forward
Backward

Narrow band

Our representation

Our refined representation

Application oriented

Mesh Vertex

Point Cloud

V(x)

Exported representation X Gradient on points

AdvectionRefinement

Our advected particles Narrowband flow field

Fig. 10. Our differentiable evolution pipeline: this figure shows how we use gradients in differentiable tasks to advect our representation while preserving
adaptivity and integrity. In each iteration, we export task-oriented points, calculate the task loss and gradients at each point, and then interpolate these
gradients to create a narrow-band velocity. Finally, we advect the particles and refine them accordingly.

ALGORITHM 2: Implicit surface reconstruction
Input :Sample Particles p, Sparse Grid G, Feature Particles c,

Feature particle functions 𝑓 , Feature particle radius ℎ
Variable :Each Grid Average fixing Position x∗G , Fixing sample

particles in each grid 𝑛
Activate G ⊲ Algorithm 1
foreach activated G do

Generate feature particles c = cG, ℎ = 𝛼ℎG
end
foreach Feature particle PF do

while 𝑓𝑖 (c𝑖) < 0.01Δc𝑖 do
Approximate 𝑓𝑖

c𝑖 ← c𝑖 − 𝑓𝑖 (c𝑖)
∇𝑓𝑖 (c𝑖)
|∇𝑓𝑖 (c𝑖) |

end
Approximate 𝑓𝑖

end
foreach Sample Particles p do

if 𝑝𝑖 not contained by any feature particles then
Get finest Gp𝑖 contains p𝑖
mark Gp𝑖 as re-generated
x∗Gp𝑖

← x∗Gp𝑖
+ p𝑖

𝑛Gp𝑖
← 𝑛Gp𝑖

+ 1
end

end
foreach G needs re-generated do

Generate feature particle 𝑐𝑖 =
x∗G𝑖
𝑛𝑖

, ℎ𝑖 = 𝛼ℎG𝑖 ⊲ Particle Fixing

end

where V𝑖 denotes the velocity value at a nearby point X, and we

use gradients on these position as velocity V𝑖 ←
𝜕L𝑡𝑎𝑠𝑘
𝜕𝑋𝑖

. Given

that points X, sample particles, and feature particles typically reside
around the implicit surface, we accurately estimate the velocity
V for each sample particle and feature particle. Consequently, we
finalize the remaining backpropagation process through particle
advection and polynomial approximation.

In addition to tackling gradient flow, our method can also handle
explicit velocity fields such as interface advection or mean curvature
flow (see Sec. 9.4). In these applications, we can propagate gradi-
ents to our representation via feature particle and sample particle
advection, thereby updating the quadratic parameter 𝜷 through
polynomial approximation.

7 DYNAMIC INTERFACE
Next, we will detail the process of utilizing velocity to advect the
underlying implicit surface, thereby evolving its geometry, topology,
and adaptivity.

7.1 Geometric Evolution
Once flow field V is obtained on each sample particle and feature
particle, we advect particles using the forward-Euler scheme: x𝑡+1 =
x𝑡 + Δ𝑡V. For optimization, Δ𝑡 is equivalent to the learning rate.
The normal of each sample particle is updated following the normal
advection in Ianniello and Di Mascio [2010]. In an arbitrary velocity
field, e.g. velocity field derived from backpropagation, the normal is
advected by: 𝐷n

𝐷𝑡
= −(∇V)⊤n + (n⊤ (∇V)⊤n)n, and for divergence-

free field 𝐷n
𝐷𝑡

= −(∇V)⊤n. To calculate ∇V, we derive from Eq.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 9

(10):

∇V(x) =
𝑘∑︁
𝑖=1
∇𝜑 (x)V𝑖 . (11)

Velocity derived from the optimization task could be noise (e.g.,
in inverse rendering). We apply a weighted principal component
analysis (PCA) used in Nicolet et al. [2021] and Yu and Turk [2013]
to update the particle normals for robustness.

7.2 Topological Transition
After advecting particles, we must deal with interface merging and
non-manifold cases by particle deletion like in the PLS method
[Enright et al. 2002].

Fig. 11. Particles with op-
posite orientations and in
close distance are deleted
to handle the topological
transition.

We conduct sample particle deletion
when two sample particles with oppo-
site orientations are too close to each
other, in particular, we delete parti-
cles if their distance |𝑝𝑖 − 𝑝 𝑗 | < 0.01𝑟 ,
where 𝑟 is the current smallest feature
particle radius.
In Fig. 11, two level-set spheres

within our representation converge to-
ward each other. Since we’re utiliz-
ing signed distance level sets (as de-
lineated in contrast to Sec. F), we elim-
inate sample particles upon collision
of the two interfaces. This approach
facilitates the transition to the correct
topology during evolution.

7.3 Dynamic Adaptivity
After advection and sample particle deletion, we perform a refine-
ment step to feature particle first and then sample particle. For
feature particles, we will first conduct the projection step and fixing
step, which we discussed in Sec. 5.2 and Sec. 5.2. Upon generating
new feature particles, we project them onto the implicit surface. We
iterate through this generalization and projection process until all
sample particles are encompassed.
Then, after feature particle refinement and obtaining the cor-

rected feature particles and the narrow band implicit surface, we
processed them to refine sample particles. Advecting sample parti-
cles to their positions and normals occasionally makes the surface
noisier and more error-prone. However, this happens infrequently
enough that we perform sample particle refinement every 20 steps.
First, we perform a projection step to sample particles in which the
angle between its normal 𝑛𝑖 and its gradient ∇𝑓 (𝑝𝑖) is significant
when 𝑛𝑖 ·

∇𝑓 (𝑝𝑖)
|∇𝑓 (𝑝𝑖) |

< 0.95, we use the same Newton projection

step discussed in Sec. 5.2 until 𝑓 (𝑝𝑖) < 10−6, and we set a stop
iteration 20 if the projection hasn’t met the condition, we delete
these sample particles. After the projection step, we would correct
sample particles that are selected in the previous step to correct

their normal as 𝑛𝑖 =
∇𝑓 (𝑝𝑖)
|∇𝑓 (𝑝𝑖) |

. Also, we randomly resample, add,

and delete sample particles during this process.

ALGORITHM 3: Differentiable moving particle
Input :Sample Particles p, Sample particle normal n, Sparse Grid

G, Feature Particles c, Feature particle functions 𝑓 ,
Smallest feature particle radius 𝑟0, refine step 𝑖𝑠𝑡𝑒𝑝 , Task
Ground truth

Variable :Loss function L, Task oriented output X, Velocity field V
while L not converged do

Export X from feature particles
L ← compare X to ground truth

Compute
𝜕L𝑡𝑎𝑠𝑘

𝜕𝑋

Obtain V using PoU over𝑉𝑖 ←
𝜕L𝑡𝑎𝑠𝑘

𝜕X𝑖
⊲ Eq. (10)

foreach p do
𝐴𝑑𝑣𝑒𝑐𝑡 (p𝑖 , n𝑖 ,V(p𝑖))

end
foreach c do

𝐴𝑑𝑣𝑒𝑐𝑡 (c𝑖 ,V(c𝑖))
end
foreach p do

p∗ ← Neighbor search on p
foreach p∗ do

if |p∗
𝑖
| < 0.01𝑟0 then

mark p∗
𝑖
and p as need deletion

end
end

end
Delete every p marked as need deletion
Implicit surface reconstruction ⊲ Algorithm 2
𝐴𝑑𝑑𝐴𝑛𝑑𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 (p, c)
if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≡ 0 (mod 𝑖𝑠𝑡𝑒𝑝) then

Project p
Re-activate G
Poisson reconstruct on p and n
Sample new p and n

end
end

7.4 Resampling
To maintain our structure’s adaptivity, we will reinitialize the

sparse grid every 𝑛 iteration (in our experiments, ranging from 8
to 20), depending on application and learning rate. And within the
context of differentiable applications, to mitigate the issue of the
least square being underfitted and the sample particle’s position
becoming excessively noisy following multiple gradient velocity
advections, we apply the Poisson reconstruction method [Kazhdan
and Hoppe 2013] [Kazhdan et al. 2006] to surface after every 20
steps. This approach effectively diminishes the occurrence of local
minima and reduces noise within the differentiable application. We
show our pseudo-code in Algorithm 3. And in Fig. 12, we show a
sphere deform by vortex field until 𝑡 = 10, which will be further
discussed in Sec. 9.4.1.

We implement a resampling strategy to mitigate the risk of falling
into the local minima for differentiation tasks like Chamfer-loss SDF
optimization (Sec. 9.2) and inverse rendering (Sec. 9.3). The resam-
pling step involves removing sample particles with large gradients,
akin to the 3D Gaussian method [Kerbl et al. 2023], and randomly
seeding new sample particles along the extensions of nearby feature

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

10 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

t = 0.00 t = 1.43 t = 2.86 t = 4.29

t = 5.72 t = 7.15 t = 8.58 t = 10.00

Fig. 12. 3D deformation field advection experiments until 𝑡 = 10. We advect
an initial sphere by a given velocity field, showing the stability and superi-
ority of our method in dynamic interface tracking.

particle surfaces. For this purpose, we select feature particles that do
not include deleted sample particles within the same coarsest grid as
the deleted ones. Subsequently, we multiply their radius by a factor
(typically 2.3 in our experiments), scatter random sample particles in
this coarsest grid, and then project them onto the extension feature
particles’ surface.
8 IMPLEMENTATION
We implemented our pipeline based on Taichi [Hu et al. 2019],
pytorch3D [Ravi et al. 2020] and Nvdiffrast [Laine et al. 2020]. Taichi
is a High-performance parallel programming language we use it
for high-speed GPU optimization and we leverage its bitmasked
SNode to construct our sparse grid and manage the particle system.
We use pytorch3D for fast neighbor search and sample points from
meshes, and we use Nvdiffrast for inverse rendering pipeline. In
differentiable applications, we set the learning rate to 5 × 10−4 for
the first 600 iterations, then reduce it to 1× 10−4 thereafter. And the
activation threshold 𝜀0, we set it to 85 in our experiments. We use
workstations with NVIDIA RTX A4000 and NVIDIA RTX A6000 to
run all our code and comparison code.

9 EXPERIMENTS
In this section, we evaluate the performance of our representation
in various differentiable optimization and surface evolution tasks.
First, in Sec. 9.1, we compare our implicit surface reconstruction
approach with the neural implicit method in terms of parameter
usage and surface quality.
Next, we demonstrate various differentiable tasks, including dif-

ferentiable SDF optimization in Sec. 9.2, inverse rendering in Sec.
9.3, and explicit flow-based surface evolution in Sec. 9.4. These ex-
amples highlight the robust differentiability and surface-tracking
capabilities. Besides, we include runtime performance analysis in
Sec. 9.6 and ablation studies in Sec. 9.5.

9.1 Direct SDF Reconstruction
In this section, we focus on demonstrating the efficiency and ac-
curacy of our representation in implicit surface reconstruction. To
achieve this, we extract sample particles and their normals from
various intricate input shapes, such as meshes. Subsequently, we
generate feature particles based on the methodology outlined in

Sec. 4 and 5, as described in Algorithm 2. We compare the resulting
implicit shape with those obtained using other methods, specifi-
cally NGLOD [Takikawa et al. 2021] and Instant-NGP [Müller et al.
2022]. For these comparisons, we utilize the source code provided
by the respective authors to ensure consistency and accuracy in our
evaluation.

Metric. We assess the quality of reconstruction by computing the
Chamfer-L distance and the Intersection-over-Union (IoU) metric.
Additionally, we compare the number of parameters, which rep-
resents the sum of the training parameters for each model. This
includes the combined total of the decoder and representation stor-
age parameters. In our model, parameters encompass the positions,
polynomial coefficients, and radii of feature particles. Consequently,
the total number of parameters is equal to 14 times the number
of feature particles (3 for positions, 10 for coefficients, and 1 for
radius).

Dataset. The dataset consists of models sourced from The Stan-
ford 3D Scanning Repository, Thingi10K [Zhou and Jacobson 2016],
and TurboSquid, encompassing shapes with intricate topologies and
geometries. For testing, we impartially select 8 models from Tur-
boSquid, 50 from Thingi10K, and all models from Stanford Models
as our test shapes.
In Fig. 13, we present the reconstruction results of challenging

shapes, accompanied by a metric comparison with NGLOD, Instant
NGP, and our method. It’s clear that, with an equivalent or fewer
number of parameters, our model showcases smoother surfaces and
superior geometric quality. The figure also illustrates the distribu-
tion of our final feature particles and their radius sizes, effectively
demonstrating the adaptive nature of our representation in handling
surface co-dimension.

Moreover, Table 1 presents the average results of models sourced
from three distinct datasets, facilitating comparison across various
metrics. The findings indicate that, with an equivalent or fewer num-
ber of parameters, our model surpasses the neural-based methods
in both IoU and NAE metrics, suggesting that our feature particles
can encode shapes more smoothly and accurately. Additionally, our
model generally exhibits superior performance in Chamfer Loss
across most shapes. Interestingly, I-NGP achieves a comparable
Chamfer Loss to ours when both reconstructed shapes are nearly
perfect (i.e., IoU close to 1).

9.1.1 non-manifold unsigned distance surface. As described in Ap-
pendix F, our method could represent non-manifold junctions in
unsigned distance surfaces which are widely used to represent foam
and bubbles in nature. In Fig. 14, we showed our non-manifold re-
construction results, we selected ground truth surface from bubbles
simulations and used our method to represent the surface, we also
showed the particle view for the reconstruction, and this indicates
our method’s ability to handle non-manifold junctions.

9.2 Differentiable SDF Optimization
In this section, our focus is primarily on presenting the task re-
lated to differentiable SDF optimization, aiming to showcase the
differentiability inherent in our framework. In our experiments, we
consistently start by initializing our model as a sphere. We then

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 11

Ours Feature particles (ours) NGLOD IGNP Ours GT

Particles num: 116435

Particles num: 82085

Particles num: 105992

Particles num: 88772

Params↓: 10.15 M
NAE↓: 16.13°

CL(×10⁻⁵)↓: 20.211
IoU↑: -

Params↓: 10.15 M
NAE↓: 3.84°

CL(×10⁻⁵)↓: 0.679
IoU↑: 0.9973

Params↓: 10.15 M
NAE↓: 4.74°

CL(×10⁻⁵)↓: 0.823
IoU↑: 0.9526

Params↓: 10.15 M
NAE↓: 7.45°

CL(×10⁻⁵)↓: 1.198
IoU↑: 0.9855

 1.78 M
10.04°
4.631

-

 1.63 M
8.60°
1.246

-

 1.15M
2.34°
0.506
0.9998

 1.48 M
3.22°
0.721
0.9968

 1.24 M
5.08°
0.774
0.9986

 1.78 M
2.75°
0.605

0.9997

 1.78 M
4.22°
0.724

0.9903

 1.78 M
5.35°
0.882

0.9979

Fig. 13. Comparison of different implicit representation methods for direct SDF reconstruction. We compare our method with NGLOD [Takikawa et al. 2021]
and Instant-NGP [Müller et al. 2022] using several metrics: Params (parameters), NAE (normalized angular error), CL (Chamfer loss2), and IoU (intersection
over union). The first two columns display a full view of our reconstructed shape and feature particles structure, while the subsequent columns provide
zoomed-in views comparing different methods and the ground truth.

Direct SDF Reconstruction

Method Parameters↓ StF Models Thingi10K TurboSquid
IoU ↑ Chamfer-𝐿2 ↓ NAE ↓ IoU↑ Chamfer-𝐿2 ↓ NAE ↓ IoU ↑ Chamfer-𝐿2 ↓ NAE ↓

NGOLD5 10.15𝑀 0.9947 0.701 × 10−5 3.56◦ 0.9523 1.675 × 10−5 5.08◦ 0.8574 6.470 × 10−5 14.04◦

I-NGP 1.77𝑀 0.9995 0.575 × 10−5 2.56◦ 0.9935 0.950 × 10−5 3.89◦ 0.9367 1.971 × 10−5 8.91◦

Ours 0.84M-1.68M 0.9997 0.505 × 10-5 2.23◦ 0.9966 1.036 × 10-5 2.83◦ 0.9538 1.319 × 10-5 7.42◦

Table 1. In direct shape reconstruction, we conduct a quantitative comparison with the NGLOD5 and INGP models. We select 8 models from TurboSquid, 50
from Thingi10K, and all models from Stanford Models as our test shapes. The findings show that our model outperforms neural-based methods in both IoU
and NAE metrics, with an equal or fewer number of parameters. This indicates that our feature particles encode shapes more smoothly and accurately.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

12 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

Fig. 14. Non-manifold junctions reconstructed by our representation. Left
top: 3D reconstructed mesh. Left bottom: feature particles view. Right top:
3D cross section showing the non-manifold structures. Right bottom: 2D
slice curves showing the junctions. We used a threshold of 0.003 to extract
mesh surfaces (with Marching Cubes) on both sides of a non-manifold
interface for visualization purposes.

use the task gradient, detailed in Sec. 6, to guide the evolution of
our model shape towards the target output. For these experiments,
we set the particle advection time step to Δ𝑡 = 0.1. This approach
allows us to observe the movement of feature particles and evaluate
the robustness of our model.

9.2.1 Chamfer Loss based surface reconstruction. In this task, we
employ the Chamfer distance loss for the differential reconstruction
of the target shape, initially set as a sphere. To achieve this, we
sample a set of surface points p𝑔𝑁𝑔 from the ground truth mesh
and calculate the Chamfer distance loss between these ground truth
points p𝑔 and the sample particles p𝑠 :L𝐶ℎ𝑎𝑚𝑓 𝑒𝑟 =

∑𝑁𝑠

𝑖=1𝑚𝑖𝑛
𝑁𝑔

𝑗=1 |p
𝑖
𝑠−

p𝑗
𝑔 |2 +

∑𝑁𝑔

𝑗=1𝑚𝑖𝑛
𝑁𝑠

𝑖=1 |p
𝑗
𝑔 − p𝑖𝑠 |2 . This loss quantifies the alignment

between the points in the predicted set and those in the ground
truth set. Minimizing this loss during training optimizes our model
towards the target shape.
As shown in Fig. 15, we compare our method to Point2Mesh

[Hanocka et al. 2020], NIE [Mehta et al. 2022], and DMTet [Shen
et al. 2021], we present various reconstruction results initiated from
a differentiable process that begins with a sphere and utilizes the
gradient of Chamfer loss for reconstruction. In these experiments,
our approach employs a minimal radius equivalent to a 5123 reso-
lution, utilizing a 4-layer radius. Similarly, for other methods, we
adopt their configurations set to a 5123 resolution. For instance, NIE
utilizes a 5123 marching cube, and Point2Mesh specifies a maximal
5122 triangle face count. As for DMTet, we utilize a 4003 resolution,
which is the maximum allowable resolution on our 32GB GPU. In

Point2Mesh NIE DMTet Ours Target

Fig. 15. We compare our method against Point2Mesh, NIE, and DMTet by
evolving an initial sphere to a given target shape via differentiable SDF opti-
mization. Our results outperform others regarding its shape completeness
(IoU, see Table2) and geometry smoothness.

these experiments, we maintain consistency by utilizing the same
number of sample points (500𝐾) on the ground truth mesh. We
train each model until convergence to ensure a fair comparison.

Differentiable Reconstruction Average
Method learning iterations IoU ↑ Chamfer-L %↓

Point2Mesh 6000 \ 4.14 × 10−3
NIE 3000 0.8741 3.12 × 10−4

DMTet 10000 0.9455 9.17 × 10−5
Ours 1500 0.9948 1.28 × 10-5

Table 2. We quantitatively compare our method with Point2Mesh, NIE,
DMTet in differentiable SDF optimization experiments. The learning itera-
tions column shows the steps until convergence. Our model demonstrates
better shape reconstruction completeness (IoU) and improved convergence
(Chamfer-L).

Due to the absence of a resampling strategy, methods like NIE are
susceptible to fitting local minima for chamfer loss, in certain cases,
the chamfer loss generates a gradient perpendicular to the surface
normal on some sections, leading to the potential occurrence of local
minima. The implementation of a resampling strategy is necessary
to mitigate this issue. Methods like Point2Mesh introduce difficulty
in altering topology through mesh optimization and dependence on
remesh strategies. This often leads to the final result preserving the
same topology as the sphere, it shows a strong reliance on the initial
shape. For DMTet, in our experiments, achieving a high-precision
mesh with their approach proves challenging, and they occasionally
encounter local minima in the loss function. We demonstrate the
IoU and Chamfer-𝐿2 metrics for these experiments in the Table. 2,
and our method outperforms others in this comparison.

9.2.2 Under-Sampling SDF Reconstruction. We apply our method
to under-sampling SDF reconstruction, utilizing sparsely sampled

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 13

RFS

RFS

RFS

Ours

Ours

Ours

Topo
Target

Topo
Target

Non-topo
Target

25³ 50³ 100³

Fig. 16. Under-sampling SDF grid reconstruction comparison with the work
RFS by Sellán et al. [2023].We use sparsely sampled SDF input on a voxel grid
and optimize our structure to represent the underlying surface continuously.
The first row displays the resolution of the input voxel grids (i.e., 253). The
other rows show the results of RFS optimization and our method. Our
approach effectively handles topological changes while RFS usually fails on
these Topo targets.

SDF grids (e.g., 103) or a limited number of sample points with SDF
values in space. Our optimization aims to reveal a more faithful
representation of the underlying surface from the sparse input data,
contrastingwithmethods like direct marching cubes. For a reference,
we apply the same Loss function/energy in Reach for sphere [Sellán
et al. 2023] method, assume we are given a set of sparse points
in space p1, p2, . . . , p𝑛 ∈ R3 with SDF value 𝑠1, 𝑠2, . . . , 𝑠𝑛 ∈ R, the
task is to reconstruct a valid surface Ω expressed the constrain
𝜙 (p𝑖 ,Ω) = 𝑠𝑖 ,∀𝑖 ∈ {1, . . . , 𝑛}. Every point p𝑖 here are considered as
a small ball with a radius 𝑠𝑖 , and our SDF must be tangent to it. This
approach is referred to as tangency-aware surface reconstruction.
The loss function is expressed as: L𝑠𝑑 𝑓 =

∑𝑛
𝑖 (𝜙 (p𝑖 ,Ω) − 𝑠𝑖)2.

In ourmethodology, we incorporate tangency-aware flow for both
feature particles and sample particles. This indicates our aim is to
guarantee that the surfaces of feature particles and sample particles,

along with their normals, are tangent to the spheres. Consequently,
the loss function becomes

L𝑡𝑎𝑛𝑔𝑒𝑛𝑐𝑦 =

𝑁𝑓∑︁
𝑗

(𝑠𝑚𝑖𝑛 − (p𝑚𝑖𝑛 − p𝑗

𝑓
) ·
∇𝑓 (p𝑗

𝑓
)

|∇𝑓 (p𝑗

𝑓
) |
)

+
𝑁𝑠∑︁
𝑗

(𝑠𝑚𝑖𝑛 − (p𝑚𝑖𝑛 − p𝑗
𝑠) · 𝑛

𝑗
𝑠).

(12)

Here, 𝑠𝑚𝑖𝑛 and p𝑚𝑖𝑛 represent the nearest input points for each
sample particle and feature particle, respectively.

Under-Sampling SDF Reconstruction Reconstruction Average

Method Grid Sizes Topo Non-topo
IoU ↑ Chamfer-L %↓ IoU ↑ Chamfer-L %↓

RFS 253 0.6618 3.06 × 10−3 0.9326 4.36 × 10−4
RFS 503 0.75 1.71 × 10−3 0.9643 1.41 × 10−4
RFS 1003 0.8692 9.73 × 10−4 0.9775 7.77 × 10−5
Ours 253 0.9308 5.27 × 10-4 0.9706 1.78 × 10-4
Ours 503 0.9567 1.29 × 10-4 0.9763 1.18 × 10-4
Ours 1003 0.9799 3.72 × 10-5 0.9858 3.77 × 10-5

Table 3. Under-sampling SDF experiments, the second column displays the
sizes of the input sparse sampled data grids. The "Topo" column indicates
that the target shape’s topology differs from the initial sphere, while the
"Non-topo" column shows that the target shapes have the same topology
as the initial sphere. IoU and Chamfer-L show the average quality of the
optimized shapes for the two methods..

We compare our result with reach for sphere (RFS) [Sellán et al.
2023], which is the original paper that proposed the tangency-aware
flow. As shown in Fig. 16, given that RFS operates on a remeshing
strategy, a notable constraint is its inability to alter topology dur-
ing optimization. In contrast, our approach, as an implicit surface
optimization method, offers the capability to modify topology dy-
namically throughout the optimization process. Observing the fig-
ure, it becomes evident that our method reconstruct a more precise
surface under the same resolution of SDF grid input. Additionally,
our approach demonstrates experimentally that implicit surfaces
reconstructed from undersampled Signed Distance Function (SDF)
grids display superior performance in terms of evolution metrics,
as in Table. 3.

9.3 Inverse Rendering
For task of inverse rendering, we use a similar method to NIE [Mehta
et al. 2022] for inverse rendering, which uses a differentiable ren-
derer designed for triangle meshes to optimize geometry defined
using parametric level sets. We focus on geometry recovery from
synthetic scenes with known reflectance, and we choose Nvdiffrast
[Laine et al. 2020] as a differentiable rasterizer. Like NIE, we extract
triangle mesh using a marching cube every time step and pass mesh
to Nvdiffrast to get the gradients for minimizing a rendering pho-
tometric error E. After getting the gradients, we define the flow
field on vertices as V𝑡 (𝑥𝑖) = − 𝜕E

𝜕x𝑖 − 𝜆Lx𝑖 , where L is the Lapla-
cian smooth term which has been proved that useful for reducing
floating and surface artifacts in Nicolet et al. [2021] and NIE. After
obtaining the flow field on vertices, we perform a partition of unity

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

14 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

D-SDF

NIE

Ours

Target

(Fail)

Fig. 17. Inverse rendering experiments compare our method with D-SDF and NIE across 8 different shapes. The first four columns display geometrically
complex shapes, while the last four show topologically complex shapes. This demonstrates that our method surpasses the compared approaches in detail
preservation and topology correctness.

Inverse Rendering

Method Metric Shapes
armadillo lion lucy roal vbunny vine lightbulb bukcy

D-SDF
Chamfer↓

9.152 × 10−5 1.414 × 10−4 1.289 × 10-4 1.537 × 10−4 1.622 × 10−2 3.166 × 10−4 8.659 × 10-5 1.622 × 10−2
NIE 5.774 × 10−5 1.519 × 10−4 6.981 × 10−4 6.981 × 10−4 1.172 × 10−4 3.063 × 10−4 0.126 (fail) 1.219 × 10−4
Ours 3.134 × 10-5 9.176 × 10-5 5.939 × 10−4 1.290 × 10-4 1.012 × 10-4 2.945 × 10-4 1.381 × 10−4 1.153 × 10-4
D-SDF

PSNR↑
29.6193 29.4887 30.4397 31.0695 19.8149 25.2570 30.5000 19.9519

NIE 34.5570 32.6136 31.3545 32.7217 29.2792 32.9315 18.5219 (fail) 28.8182
Ours 41.0505 36.1631 33.1622 36.4942 31.1530 34.9583 35.0729 31.5995

Table 4. Inverse Rendering comparison. We quantitatively compare our method with D-SDF [Vicini et al. 2022] and NIE [Mehta et al. 2022] using Chamfer
loss and PSNR. Our results achieve up to a 4-point increase in PSNR compared to other models and enhance stability (NIE fails in the penultimate case).

on velocity to get a continuous narrow-band velocity described in
Sec. 6.1 to update our representation.

In our experiments, we select various shapes characterized by di-
verse genus and geometric intricacies. We conduct comparative anal-
yses between our approach and the methods NIE and D-SDF[Vicini
et al. 2022]. Specifically, we employ a grid resolution of 1753 for
marching cubes in NIE and an sdf grid resolution of 1753 for D-SDF.
For our method, we utilize a resolution comprising a 3-layer sparse
grid, with the finest grid width set to match the 1753 resolution.
Additionally, we set our finest particle radius to 1.15 times the size
of this cell. In both methods, we randomly generated 100 viewpoints
for each shape. Throughout the optimization process, we initialized
both shapes as spheres with a radius of 0.3 within the space defined
by [−1, 1]. As illustrated in Figure 17, each method demonstrates
the capability to reconstruct shapes effectively, particularly those

exhibiting minimal topological deviation from a sphere, but D-SDF
encounters challenges in accurately optimizing shapes with high
genus, such as the vbunny, NIE may encounter situations where it
ends up with an SDF field lacking an iso-surface (for instance, in
the case of a lightbulb, the final optimized SDF network outputs are
above 0 throughout the space, and we present the last third iteration
in our figure). Under the same resolution, the optimized shapes pro-
duced by NIE and D-SDF methods exhibit less detail compared to
ours. This discrepancy arises from the inherent smoother tendency
of the networks utilized in NIE and the grids employed in D-SDF,
in contrast to our quadratic particles approach.

In Table 4, We assess the Chamfer Loss and PSNR of the rendered
images. Our method outperforms the other two methods in terms of
the PSNR metric and achieves superior performance in most of the
Chamfer Loss evaluations. However, D-SDF exhibits better Chamfer

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 15

Loss in some shapes, potentially attributed to the optimization of
the grid to maintain a smoother average and prevent the genera-
tion of off-surface artifacts. In contrast, our method and NIE may
occasionally exhibit inner floating artifacts due to the lack of visible
information about the inner space of a shape.

Ours t = 0.00

t = 3.10

t = 0.95 t = 1.90 t = 2.50

t = 5.00t = 4.55t = 4.05

PLS t = 0.00

t = 3.10

t = 0.95 t = 1.90 t = 2.50

t = 5.00t = 4.55t = 4.05

Fig. 18. We compare our method with PLS (Particle Level Set) in a 3D
advection test. The initial sphere is advected by a given velocity field and
reversed at 𝑡 = 2.5. Ours is able to better preserve the volume with fewer
artifacts than the PLS method.

9.4 Explicit Velocity Evolution
In this section, we demonstrate the use of pre-defined velocity fields,
such as the vortex field or velocity fields derived from explicit com-
putations like curvature flow, for the advection of our representation.
This is in contrast to utilizing the gradient flow derived from au-
tomatic differentiation in the previous section. For the advection
tests in this section, we use the fourth-order Runge-Kutta method to
achieve a more accurate solution and adhere to established practices
in advection testing.

9.4.1 Level Set Evolution Tests. We employ a three-dimensional
incompressible flow field advection test used in PLS [Enright et al.
2002]. The velocity field is given by 𝑢 = 2 𝑠𝑖𝑛2 (𝜋𝑥)
𝑠𝑖𝑛(2𝜋𝑦) 𝑠𝑖𝑛(2𝜋𝑧), 𝑣 = − 𝑠𝑖𝑛(2𝜋𝑥) 𝑠𝑖𝑛2 (𝜋𝑦) 𝑠𝑖𝑛(2𝜋𝑧),𝑤 = − 𝑠𝑖𝑛(2𝜋𝑥)
𝑠𝑖𝑛(2𝜋𝑦) 𝑠𝑖𝑛2 (𝜋𝑧), and the flow field is reversed at 𝑡 = 3, and we
choose sub-step Δ𝑡 = 0.01 for experiments. We placed a sphere
with a radius 0.15 at (0.35, 0.35, 0.35) within a unit computational
domain. This flow makes the sphere to be entrained by two rotating
vortices, the sphere deformation reaches the maximum at 𝑡 = 3 and
should be flowed back to the original shape at 𝑡 = 6. We employ 4
layer initialization sparse grid beginning at 1283 and end with the
finest resolution 5123 in this test, as a comparison, we employ the
PLS method with 5123 resolution to perform the same evolution.

Ours

PLS

t = 0.00 t = 5.00 t = 10.00 t = 15.00

Fig. 19. Rigid body rotation comparison with PLS method. The armadillo is
rotated at a constant speed and we show that our method better preserves
the details than the PLS method with zoomed-in views of the final advected
frames.

Smoothed Initial shape Sharpened

Fig. 20. Smoothed and sharpened bunny using mean curvature flow.

As depicted in Fig. 18, our approach effectively restores the orig-
inal spherical shape during this evolution process. Moreover, we
assess the volume lost in the restored shape compared to the original
one, as presented in Table 5, demonstrating our method outperforms
the PLS method. Our method can also deform for a longer version
for example till 𝑡 = 10. A longer version was proposed in the Level
Set Review by Gibou et al. [2018]. They deformed the sphere with a
resolution of 40963 using a supercomputer until 𝑡 = 9. We are able
to achieve similar results, as demonstrated in Fig. 12, employing a
2-layer sparse grid with the finest grid being 10243.
We also use the rigid body rotation velocity field 𝑢 = 0.5 − 𝑦,

𝑣 = 𝑥 − 0.5, 𝑤 = 0 to evaluate 3D diffusion error under evolution.
We use bunny and armadillo as our test shapes, the shapes are unit
normalized in bounding box [1, 1, 1] and centering at (0.5, 0.5, 0.5).
Similarly to the previous test, we compare our method with the PLS
method under 5123 resolution. Fig. 19 shows the rotation process
and table 5 we compare the lost volume for each method at the final
frame, and they indicate our method preserves better shape during
this process.

9.4.2 Mean Curvature Flow. We employ an intrinsic flow that is
self-generated from the implicit surface, known as mean curvature
flow. The velocity is given by:

V(x) = 𝜆Δx = −2𝜆𝜅 (x)n(x), (13)

where x is a point on the implicit surface, 𝜆 is a diffusion scalar, Δ is
the Laplace-Beltrami operator, and𝜅 and n is themean curvature and
normal. Calculating the mean curvature 𝜅 becomes straightforward
with our polynomial-based Partition of Unity. From Eq. (4) for each
feature particle we calculate curvature inside its supporting radius

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

16 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

Explicit Velocity Evolution

Method Resolution 3D Deformation Field Rigid Body Rotation
Deform Iterations IoU ↑ Volume Loss %↓ Rotation Iterations IoU ↑ Volume Loss %↓

PLS 1283 500 0.95224 3.83628 1500 0.97005 1.77448
PLS 5123 500 0.97543 0.45876 1500 0.99392 0.20883
Ours 1283 500 0.99878 −0.14774 1500 0.99660 −0.01213
Ours 5123 500 0.99893 0.05751 1500 0.99868 0.00059

Table 5. Deformation Evaluation. The "Resolution" column displays the finest grid resolution used in the experiments, while the "Iterations" column shows the
number of advection steps performed. We evaluate IoU and Volume Loss between the final advected frame and the initial frame.

as:

𝜅𝑖 = ∇ ·
∇𝑓𝑖
|∇𝑓𝑖 |

= ∇ · ∇bi
⊤𝛽𝑖

|∇bi
⊤𝛽𝑖 |

. (14)

We derive a detailed curvature formulation in Appendix D. Then
we get the global curvature function by 𝜅 (x) = ∑𝑁𝑝

𝑖=1 𝜑𝑖 (x)𝜅𝑖 (x). In
mean curvature experiments, our set 4-layer radius for our particle,
the finest feature particle are generated from the cell with 1283
resolution and the coarsest from 163.
We apply the flow described in Eq. (13) to our representation

following the method outlined in Sec. 6. Consequently, the implicit
surface represented by our model undergo smoothing (for 𝑡 > 0) or
sharpening (for 𝑡 < 0) during the mean curvature flow evolution.
Fig. 20 illustrates a smoothed and sharpened bunny achieved using
our method.

Fig. 21. Mean curvature flow evolution of bunny surface . And Dumbbell
surface illustrating the changes in topology throughout the process.

In Fig. 21, we depict the evolution process of a topological genus
0 bunny into a point. Noticeably, the rabbit’s ears are in the process
of evolving into singularity shapes. Our implicit surface evolution
method adeptly handles these singularities, a capability that other
methods (such as mesh-based approaches) may lack. Furthermore,
we demonstrate the evolution of a classic example the dumbbell in
Fig. 21. Initially, it pinches off, creating two connected components.
Subsequently, each component collapses to a point, eventually form-
ing small spheres just before that. The topology of the dumbbell
undergoes changes during this evolution. We effectively manage
topology changes and remove non-manifold regions due to the
method outlined in Sec. 7.2.

9.5 Ablation Study

Reconstruction Params IoU CL
MPU 1.32M 0.9996 0.641 × 10−5
Our 1.55M 0.9997 0.505 × 10−5

Table 6. Moving v.s. Fixed Feature Particles in Reconstruction ablation study.
We use StF Models in Sec. 9.1 for comparsion. The moving-particle version
outperforms the fixed-particle version (original MPU) by 20% in Chamfer
loss, though it requires 14% more parameters to enable particle motion.

Ours MPU

Fig. 22. Moving v.s. Fixed Feature Particles in Reconstruction. It shows that
our reconstruction results are smoother and of higher quality around the
statue’s eyes.

Moving v.s. Fixed Feature Particles in Reconstruction. We compare
the algorithm efficacy in direct shape reconstruction (see Sec.9.1)
between using moving feature particles and fixed feature particles
(i.e., traditional MPU [Ohtake et al. 2005]). This ablation test aims
to demonstrate the efficacy of moving particles in the reconstruc-
tion pipeline. In Figure 22, we show comparison reconstruction on
David’s statue, it shows that our reconstruction results are smoother
and of higher quality at statue’s eyes. And as shown in Table 6, the
moving-particle version outperforms the fixed-particle version (i.e.,
original MPU) by 20% in Chamfer loss, at the expense of 14% extra
parameter usage to enable particle motion in reconstruction.
Fixed v.s. Moving Feature Particles in Inverse Rendering. Next, we

further demonstrate the role of moving feature particles in differen-
tiable optimization tasks. We carry out our ablation test within an
inverse rendering pipeline. As shown in Figure 23 (b), the algorithm
produces an output shape with noticeable artifacts on the bunny’s

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 17

Ours

Without Poisson

(a)

(d)

Without PCA

(c)

Fixed MPU

(b)

Fig. 23. Robustness Operation ablation study in inverse rendering. Figure (b)
shows the fixed particle version of our method. Figure (c) displays particle
advection without PCA for normal correction, which results in noticeable
artifacts. Figure (d) illustrates advection without Poisson reconstruction for
reinitialization, which fails midway through optimization due to excessive
artifacts, leading to invalid gradients.

face and around its feet. In implementing the algorithm with fixed
feature particles, we carry out the reinitialization step for every
iteration to match the MPU representation with the current shape.
We conjecture that this frequent reinitialization causes less accurate
rendering and the loss of surface details.

PCA and Poisson Reconstruction. To demonstrate the necessity of
our additional operations of PCA for particle normal calculation and
Poisson reconstruction for reinitialization, we conduct ablation tests
on these two operations for evolving a sphere to a bunny shape using
inverse rendering. As shown in Fig. 23, without these operations, the
algorithm will produce results with noticeable artifacts and errors.
In particular, as shown in Fig. 23 (c), the shape output exhibits
over 20 visually noticeable artifacts and loses details without the
PCA normal calculation. As shown in Fig. 23 (d), the global shape
diverges from the ground truth after 70 iterations without a Poisson
reconstruction due to the invalid gradients.

9.6 Runtime Performance
Training Time for Reconstruction. As shown in Table 7, ourmethod’s

training time is comparable to INGP (7 seconds slower in total train-
ing) and significantly faster than NGLOD (𝑥10 speedup) for direct
reconstruction tasks (i.e., producing SDF using ground truth input

Querying time(s) DeepSDF NGLOD I-NGP Ours

Voxel size
10243 2824.92 125.75 11.16 19.23
5123 756.43 8.75 1.89 2.14
1283 15.18 0.23 0.094 0.083

Training time(s) 3600.00 439.24 8.40 16.17
Table 7. Runtime performance: Querying times for different models after
training and average training time in Sec. 9.1. "Voxel size" denotes the size
of the test querying positions used to measure these times. We trained
DeepSDF for only one hour due to its lengthy training time and lower
quality compared to other models.

sample particles, see Sec. 9.1 for task details). We further provide
a breakdown of the time spent on each step as shown in Table 8,
indicating that the sparse grid initialization is the bottleneck of the
entire process.

Training Time for Inverse Rendering. Next, we further demonstrate
the timing performance for the training step in inverse rendering
tasks. As shown in Table 8, our approach is 50% faster than NIE in
total time with the same number of iterations. This is because, for
each iteration, NIE trains the neural network, which takes about 6
seconds, while we advect particles and update theirMPU parameters,
which takes about one second, along with particle reinitialization
every twenty iterations.
Query Time. Last, we evaluate our model’s querying speed after

the training process is finished. In particular, We measure the time
required to input voxel position data and retrieve the SDF value at
each position. As shown in Table 7, the average querying time is
comparable to that of INGP and ten times faster than NGLOD and
DeepSDF [Park et al. 2019b].
10 CONCLUSIONS
We have introduced a novel differentiable moving particle repre-
sentation using the multi-level partition of unity for dynamic im-
plicit geometries. Our adaptive particle representation effectively
expresses implicit surfaces and is enhanced by a multi-level back-
ground grid for particle adaptivity. We have developed a fully differ-
entiable framework capable of inferring and evolving highly detailed
implicit geometries. We demonstrate that our pipeline is versatile,
applicable to various optimization and dynamic tracking problems,
and demonstrates lower memory consumption, fewer training iter-
ations, and higher accuracy across different applications.

Limitation. While our approach has strengths, it also has limi-
tations. The reliance on quadratic functions can lead to outliers,
causing instability in surface representation and optimization tasks.
Additionally, maintaining an adaptive sparse grid requires extra
memory. While our use of weighted least squares offers speed ad-
vantages, alternative methods like gradient descent, seen in works
such as 3D Gaussian[Kerbl et al. 2023], could offer similar efficiency.
Hence, replacing this step with gradient descent could balance speed
and stability, improving our framework.

Future work. Looking forward, our framework offers several promis-
ing avenues for future development. We plan to incorporate the
feature particle radius into the optimization process, eliminating

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

18 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

Direct reconstruction reinitialization solving projection + fixing -
Avg Time(s) 2.17(only beginning) 0.32 0.29 -

Inverse rendering reinitialization compute gradient advection refinement
Avg Time(s) 8.42(every 20 step) 0.46 0.12 0.53

Table 8. Runtime performance breakdown for direct reconstruction and inverse rendering of our method, analyzed using the NVIDIA RTX A6000.

the need for an adaptive sparse grid and enhancing robustness. Ad-
ditionally, we aim to use more expressive feature vectors beyond
quadratic polynomials to better capture mixed-codimensional geo-
metric features. Integrating our non-manifold representation into
the optimization pipeline will enable effective optimization on non-
manifold surfaces and any unsigned distance field, as demonstrated
by meshUDF[Guillard et al. 2022], NeuralUDF[Long et al. 2023]. Fi-
nally, given the versatility of our feature particles in fitting various
physical quantities, there is potential for applications in physical
simulations, particularly in surface simulation.

ACKNOWLEDGMENTS
This project was supported by Toyota Central RD Labs., Inc.. Georgia
Tech authors also acknowledge NSF IIS 2433322, ECCS 2318814,
CAREER 2433307, IIS 2106733, OISE 2433313, and CNS 1919647 for
funding support. We credit the Houdini education license for video
animations.

REFERENCES
Jad Abou-Chakra, Feras Dayoub, and Niko Sünderhauf. 2023. ParticleNeRF: A Particle-

Based Encoding for Online Neural Radiance Fields. arXiv:2211.04041 [cs.CV]
Samir Akkouche and Eric Galin. 2001. Adaptive Implicit Surface Polygonization Using

Marching Triangles. Computer Graphics Forum 20, 2 (2001), 67–80. https://doi.org/10.
1111/1467-8659.00479 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-
8659.00479

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and
Claudio T Silva. 2001. Point set surfaces. In Proceedings Visualization, 2001. VIS’01.
IEEE, 21–29.

Sergei Azernikov and Anath Fischer. 2005. Anisotropic meshing of implicit surfaces.
In International Conference on Shape Modeling and Applications 2005 (SMI’05). IEEE,
94–103.

Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free sur-
face flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 209–217.

Nathan Bell, Yizhou Yu, and Peter J Mucha. 2005. Particle-based simulation of granular
materials. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 77–86.

Jules Bloomenthal and Chandrajit Bajaj. 1997. Introduction to implicit surfaces. Morgan
Kaufmann.

Zhong Chen, Zhiwei Hou, Quanquan Yang, and Xiaobing Chen. 2018. AdaptiveMeshing
Based on theMulti-level Partition of Unity andDynamic Particle Systems forMedical
Image Datasets. International Journal Bioautomation 22, 3 (2018), 229.

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi Xu.
2023. Neurbf: A neural fields representation with adaptive radial basis functions. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 4182–4194.

Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vlasic, and Zhoutong Zhang. 2021.
Differentiable surface rendering via non-differentiable sampling. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 6088–6097.

Y. Deng, M. Wang, X. Kong, S. Xiong, Z. Xian, and B. Zhu. 2022. A Moving Eulerian-
Lagrangian Particle Method for Thin Film and Foam Simulation. ACM Trans. Graph.
41, 4 (2022).

Tamal K Dey and Jian Sun. 2005. . An Adaptive MLS Surface for Reconstruction with
Guarantees.. In Symposium on Geometry processing. 43–52.

Francçois Duranleau, Philippe Beaudoin, and Pierre Poulin. 2008. Multiresolution
point-set surfaces. In Proceedings of Graphics Interface 2008. 211–218.

Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. 2002. A hybrid particle
level set method for improved interface capturing. Journal of Computational physics
183, 1 (2002), 83–116.

Richard Franke and Greg Nielson. 1980. Smooth interpolation of large sets of scattered
data. International journal for numerical methods in engineering 15, 11 (1980), 1691–
1704.

Sarah F Frisken, Ronald N Perry, Alyn P Rockwood, and Thouis R Jones. 2000. Adaptively
sampled distance fields: A general representation of shape for computer graphics.
In Proceedings of the 27th annual conference on Computer graphics and interactive
techniques. 249–254.

Frederic Gibou, Ronald Fedkiw, and Stanley Osher. 2018. A review of level-set methods
and some recent applications. J. Comput. Phys. 353 (2018), 82–109.

Gaël Guennebaud and Markus Gross. 2007. Algebraic point set surfaces. In ACM
siggraph 2007 papers. 23–es.

Benoit Guillard, Federico Stella, and Pascal Fua. 2022. MeshUDF: Fast and Differentiable
Meshing of Unsigned Distance Field Networks. In European Conference on Computer
Vision.

Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2mesh: A
self-prior for deformable meshes. arXiv preprint arXiv:2005.11084 (2020).

Simone E Hieber and Petros Koumoutsakos. 2005. A Lagrangian particle level set
method. J. Comput. Phys. 210, 1 (2005), 342–367.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019. Taichi: a language for high-performance computation on spatially sparse data
structures. ACM transactions on graphics 38, 6 (2019), 1–16.

Yuan Hu, Jingqi Yan, Wei Li, and Pengfei Shi. 2010. A novel facial localization for
three-dimensional face using multi-level partition of unity implicits. In 2010 20th
International Conference on Pattern Recognition. IEEE, 682–685.

Xianping Huang, Qing Tian, Jianfei Mao, Li Jiang, and Ronghua Liang. 2010. Adaptive
moving least squares for scattering points fitting. WSEAS Transactions on Computers
9, 6 (2010), 664–673.

Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational implicit point set surfaces.
ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.

Sandro Ianniello and Andrea Di Mascio. 2010. A self-adaptive oriented particles Level-
Set method for tracking interfaces. J. Comput. Phys. 229, 4 (2010), 1353–1380.

Yue Jiang, Dantong Ji, Zhizhong Han, andMatthias Zwicker. 2020. Sdfdiff: Differentiable
rendering of signed distance fields for 3d shape optimization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 1251–1261.

Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen
Li, Henry Lau, Feng Gao, Yin Yang, et al. 2024. VR-GS: A Physical Dynamics-
Aware Interactive Gaussian Splatting System in Virtual Reality. arXiv preprint
arXiv:2401.16663 (2024).

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface re-
construction. In Proceedings of the fourth Eurographics symposium on Geometry
processing, Vol. 7.

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.
ACM Transactions on Graphics (ToG) 32, 3 (2013), 1–13.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.
3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on
Graphics 42, 4 (July 2023). https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Dan Koschier, Crispin Deul, Magnus Brand, and Jan Bender. 2017. An hp-adaptive
discretization algorithm for signed distance field generation. IEEE transactions on
visualization and computer graphics 23, 10 (2017), 2208–2221.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering.
ACM Transactions on Graphics 39, 6 (2020).

David Levin. 2004. Mesh-independent surface interpolation. In Geometric modeling for
scientific visualization. Springer, 37–49.

Weitao Li, Yuanfeng Zhou, Caiming Zhang, and Xuemei Li. 2014. Robust multi-level
partition of unity implicits from triangular meshes. Computer Animation and Virtual
Worlds 25, 2 (2014), 115–127.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft rasterizer: A differentiable
renderer for image-based 3d reasoning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 7708–7717.

Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Peng-Shuai Wang, Xin Tong, and Yang Liu. 2021.
Deep implicit moving least-squares functions for 3D reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1788–1797.

Xiaoxiao Long, Cheng Lin, Lingjie Liu, Yuan Liu, Peng Wang, Christian Theobalt, Taku
Komura, and Wenping Wang. 2023. Neuraludf: Learning unsigned distance fields for

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

https://arxiv.org/abs/2211.04041
https://doi.org/10.1111/1467-8659.00479
https://doi.org/10.1111/1467-8659.00479
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00479
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00479
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Multi-level Partition of Unity on Differentiable Moving Particles • 19

multi-view reconstruction of surfaces with arbitrary topologies. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 20834–20843.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. 2024. Dynamic
3D Gaussians: Tracking by Persistent Dynamic View Synthesis. In 3DV.

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. 2022. A Level Set Theory
for Neural Implicit Evolution under Explicit Flows. arXiv preprint arXiv:2204.07159
(2022).

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. 2023. A Theory of
Topological Derivatives for Inverse Rendering of Geometry. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 419–429.

Corentin Mercier, Thibault Lescoat, Pierre Roussillon, Tamy Boubekeur, and Jean-Marc
Thiery. 2022. Moving level-of-detail surfaces. ACM Transactions on Graphics (TOG)
41, 4 (2022), 1–10.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.
3530127

Andrew Nealen. 2004. An as-short-as-possible introduction to the least squares,
weighted least squares and moving least squares methods for scattered data approx-
imation and interpolation. URL: http://www. nealen. com/projects 130, 150 (2004),
25.

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in Inverse Ren-
dering of Geometry. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia)
40, 6 (Dec. 2021). https://doi.org/10.1145/3478513.3480501

Tiago Novello, Vinicius Da Silva, Guilherme Schardong, Luiz Schirmer, Helio Lopes, and
Luiz Velho. 2023. Neural Implicit Surface Evolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 14279–14289.

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. 2003.
Multi-Level Partition of Unity Implicits. ACM Trans. Graph. 22, 3 (jul 2003), 463–470.
https://doi.org/10.1145/882262.882293

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. 2005.
Multi-level partition of unity implicits. In Acm Siggraph 2005 Courses. 173–es.

Stanley Osher and James A Sethian. 1988. Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations. Journal of computational
physics 79, 1 (1988), 12–49.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019a. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 165–174.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019b. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Mark Pauly, Leif P Kobbelt, and Markus Gross. 2006. Point-based multiscale surface
representation. ACM Transactions on Graphics (TOG) 25, 2 (2006), 177–193.

Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas
Geiger. 2021. Shape as points: A differentiable poisson solver. Advances in Neural
Information Processing Systems 34 (2021), 13032–13044.

Marie-Julie Rakotosaona, Noam Aigerman, Niloy J Mitra, Maks Ovsjanikov, and Paul
Guerrero. 2021. Differentiable surface triangulation. ACM Transactions on Graphics
(TOG) 40, 6 (2021), 1–13.

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin
Johnson, and Georgia Gkioxari. 2020. Accelerating 3D Deep Learning with Py-
Torch3D. arXiv:2007.08501 (2020).

Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit Guillard, Timur Bagaut-
dinov, Pierre Baque, and Pascal Fua. 2020. Meshsdf: Differentiable iso-surface
extraction. Advances in Neural Information Processing Systems 33 (2020), 22468–
22478.

A. Ricci. 1973. A constructive geometry for computer graphics. Com-
put. J. 16, 2 (01 1973), 157–160. https://doi.org/10.1093/comjnl/16.2.157
arXiv:https://academic.oup.com/comjnl/article-pdf/16/2/157/1060001/160157.pdf

Naohisa Sakamoto, Jorji Nonaka, Koji Koyamada, and Satoshi Tanaka. 2007. Particle-
based volume rendering. In 2007 6th International Asia-Pacific Symposium on Visual-
ization. IEEE, 129–132.

Marc Alexander Schweitzer. 2009. An adaptive hp-version of the multilevel particle–
partition of unity method. Computer methods in applied mechanics and engineering
198, 13-14 (2009), 1260–1272.

Marc Alexander Schweitzer. 2011. Multilevel particle-partition of unity method. Numer.
Math. 118, 2 (2011), 307–328.

Silvia Sellán, Christopher Batty, and Oded Stein. 2023. Reach For the Spheres: Tangency-
aware surface reconstruction of SDFs. In SIGGRAPH Asia 2023 Conference Papers.
1–11.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A
sparse paged grid structure applied to adaptive smoke simulation. ACM Transactions
on Graphics (TOG) 33, 6 (2014), 1–12.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep
marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis.
Advances in Neural Information Processing Systems 34 (2021), 6087–6101.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, ZianWang, Wenzheng
Chen, Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. 2023. Flexible isosurface
extraction for gradient-based mesh optimization. ACM Transactions on Graphics
(TOG) 42, 4 (2023), 1–16.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. (2021).

Satoshi Tanaka, Kyoko Hasegawa, Yoshiyuki Shimokubo, Tomonori Kaneko, Takuma
Kawamura, Susumu Nakata, Saori Ojima, Naohisa Sakamoto, Hiromi T Tanaka, and
Koji Koyamada. 2012. Particle-Based Transparent Rendering of Implicit Surfaces
and its Application to Fused Visualization.. In EuroVis (Short Papers). 35–29.

Gokul Varadhan, Shankar Krishnan, TVN Sriram, and Dinesh Manocha. 2004. Topology
preserving surface extraction using adaptive subdivision. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing. 235–244.

Magnus Vartdal and Arne Bøckmann. 2013. An oriented particle level set method based
on surface coordinates. Journal of computational physics 251 (2013), 237–250.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed Distance
Function Rendering. Transactions on Graphics (Proceedings of SIGGRAPH) 41, 4 (July
2022), 125:1–125:18. https://doi.org/10.1145/3528223.3530139

Chun-Xia Xiao. 2011. Multi-level partition of unity algebraic point set surfaces. Journal
of Computer Science and Technology 26, 2 (2011), 229–238.

Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu
Jiang. 2023. Physgaussian: Physics-integrated 3d gaussians for generative dynamics.
arXiv preprint arXiv:2311.12198 (2023).

Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung.
2019. Differentiable surface splatting for point-based geometry processing. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–14.

Jihun Yu and Greg Turk. 2013. Reconstructing surfaces of particle-based fluids using
anisotropic kernels. ACM Transactions on Graphics (TOG) 32, 1 (2013), 1–12.

Lanhao Zhao, Hongvan Khuc, Jia Mao, Xunnan Liu, and Eldad Avital. 2018. One-layer
particle level set method. Computers & Fluids 170 (2018), 141–156.

Zichun Zhong, Xiaohu Guo, Wenping Wang, Bruno Lévy, Feng Sun, Yang Liu, Weihua
Mao, et al. 2013. Particle-based anisotropic surface meshing. ACM Trans. Graph. 32,
4 (2013), 99–1.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

A CODE
Our code is available at https://jinjinhe2001.github.io/diffmpu-

page/index.html.
B TRAINING DATA

Y

X

Fig. 24. Our feature particles incorporate various auxiliary points for poly-
nomial approximation.

For the optimizing purpose, we generate our training data points
with signed distance values interpolated from sample particles. As

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3478513.3480501
https://doi.org/10.1145/882262.882293
https://doi.org/10.1093/comjnl/16.2.157
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/16/2/157/1060001/160157.pdf
https://doi.org/10.1145/3528223.3530139

20 • Jinjin He, Taiyuan Zhang, Hiroki Kobayashi, Atsushi Kawamoto, Yuqing Zhou, Tsuyoshi Nomura, and Bo Zhu

shown in Fig. 24 these training points include: 1) all sample par-
ticles’ positions with 0 distance value, 2) auxiliary points that are
generalized at distance from ± 1

4 , ±
1
2 , ±

3
4 along the three axes of the

supporting radius, and 3) randomly generalized points in support-
ing radius with distance value interpolated from its nearby sample
particle. To calculate each auxiliary point q’s distance to the surface,
we find its 𝑘 nearest sample particle neighbors p1, p2, · · · , p𝑘 with
their normal vectors n1, n2, · · · , n𝑘 , 𝑘 here we select ranging from 1
to 10 in experiments, then the distance 𝐷 (q) can be interpolated as,

𝐷 (q) = 1
𝑘

𝑘∑︁
𝑖=1

n𝑖 (q − p𝑖) . (15)

To obtain a reliable signed distance function, we discard auxiliary
points whose nearest 𝑘 signed distance values exhibit divergent
signs.

C WEIGHTED LEAST SQUARE
In weighted least square optimization, we conduct optimization to
minimize the error function from Eqution 6:

min
𝛽
L =

1∑
𝑤 (p𝑖)

∑︁
𝑤 (p𝑖) 𝑓 (p𝑖)2 +

1
𝑚

𝑚∑︁
𝑖=1
(𝑓 (q𝑖) − 𝐷 (q𝑖))2 ,

(16)
According to Eq. 3, the error function can be written as:

L =
1∑
𝑤 (p𝑖)

∑︁
𝑤 (p𝑖) (b(p𝑖−c)⊤𝛽)2+ 1

𝑚

𝑚∑︁
𝑖=1

(
b(q𝑖 − c)⊤𝛽 − 𝐷 (q𝑖)

)2
,

(17)

𝜕L
𝜕𝛽

=
1∑
𝑤 (p𝑖)

∑︁
2𝑤 (p𝑖)b(p𝑖 − c)b(p𝑖 − c)⊤𝛽

+ 1
𝑚

𝑚∑︁
𝑖=1

2(b(q𝑖 − c) (b(q𝑖 − c)⊤𝛽 − 𝐷 (q𝑖)),
(18)

To minimize the error function, we need to get 𝛽 when
𝜕L
𝜕𝛽

= 0,

then:

𝜕L
𝜕𝛽

=
1∑
𝑤 (p𝑖)

∑︁
2𝑤 (p𝑖)b(p𝑖 − c)b(p𝑖 − c)⊤𝛽

+ 1
𝑚

𝑚∑︁
𝑖=1

2(b(q𝑖 − c) (b(q𝑖 − c)⊤𝛽 − 𝐷 (q𝑖))

= 0,

(19)

next we have

[1∑
𝑤 (p𝑖)

∑︁
2𝑤 (p𝑖)b(p𝑖 − c)b(p𝑖 − c)⊤

+ 1
𝑚

𝑚∑︁
𝑖=1

2b(q𝑖 − c) (b(q𝑖 − c)⊤]𝛽

=
1
𝑚

𝑚∑︁
𝑖=1

2b(q𝑖 − c)𝐷 (q𝑖),

(20)

and solve we can solve coefficients by:

c = A−1B, (21)

where

A =
1∑
𝑤 (p𝑖)

∑︁
2𝑤 (p𝑖)b(p𝑖 − c)b(p𝑖 − c)⊤

+ 1
𝑚

𝑚∑︁
𝑖=1

2b(q𝑖 − c)b(q𝑖 − c)⊤,

B =
1
𝑚

𝑚∑︁
𝑖=1

2b(q𝑖 − c)𝐷 (q𝑖),

Since both A and B are low-dimensional matrices and vectors(10 ×
10 and 10 × 1 for 3D), we can optimize the local shape at a low
computational cost least square for each feature particle.

D CURVATURE CALCULATION ON QUADRATIC
FUNCTION

To compute the curvature from our feature particles, we start from
Eq. 3 and Eq. 14,

𝜅 = ∇ · ∇b⊤𝛽
|∇b⊤𝛽 |

=
𝜕(∇b⊤𝛽
|∇b⊤𝛽 |)𝑥
𝜕𝑥

+
𝜕(∇b⊤𝛽
|∇b⊤𝛽 |)𝑦
𝜕𝑦

+
𝜕(∇b⊤𝛽
|∇b⊤𝛽 |)𝑧
𝜕𝑧

(22)

, where 𝜕(∇b⊤𝛽
|∇b⊤𝛽 |)𝑥 is the component along the x-axis, and y,z is the

same. In the 3D case, let’s assume 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽9). set ∇b⊤𝛽 =

G = (𝐺𝑥 ,𝐺𝑦,𝐺𝑧) which actually is the local quadratic function’s
gradient, we can get

𝐺𝑥 = 2𝛽0 · 𝑥 + 𝛽3 · 𝑦 + 𝛽5 · 𝑧 + 𝛽6
𝐺𝑦 = 2𝛽1 · 𝑦 + 𝛽3 · 𝑥 + 𝛽4 · 𝑧 + 𝛽7
𝐺𝑧 = 2𝛽2 · 𝑧 + 𝛽4 · 𝑦 + 𝛽5 · 𝑥 + 𝛽8,

(23)

and |∇b⊤𝛽 | =
√︃
𝐺2
𝑥 +𝐺2

𝑦 +𝐺2
𝑧 = |G|, next we expansion Eq. 23,

𝜅 =
𝜕(𝐺𝑥

|G |)
𝜕𝑥

+
𝜕(𝐺𝑦

|G |)
𝜕𝑦

+
𝜕(𝐺𝑧

|G |)
𝜕𝑧

=
𝜕𝐺𝑥

𝜕𝑥
· 1
|G| −

𝐺𝑥

|G|2
· 𝜕 |G|
𝜕𝑥

+
𝜕𝐺𝑦

𝜕𝑦
· 1
|G| −

𝐺𝑦

|G|2
· 𝜕 |G|
𝜕𝑦

+ 𝜕𝐺𝑧

𝜕𝑧
· 1
|G| −

𝐺𝑧

|G|2
· 𝜕 |G|
𝜕𝑧

(24)

Then we get

𝜅 =
1
|G|2
(𝜕𝐺𝑥

𝜕𝑥
|G| +

𝜕𝐺𝑦

𝜕𝑦
|G| + 𝜕𝐺𝑧

𝜕𝑧
|G|

− 𝜕 |G|
𝜕𝑥

𝐺𝑥 −
𝜕 |G|
𝜕𝑦

𝐺𝑦 −
𝜕 |G|
𝜕𝑧

𝐺𝑧)
(25)

Given that 𝜅 in Eq. (25) is entirely expressed by G, and combined
with Eq. (23), we can derive the local curvature.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Multi-level Partition of Unity on Differentiable Moving Particles • 21

Fig. 26. Sharp features characterized by our representation. Left: fandisk
reconstructed by our method. Right top: result without group partition.
Right bottom: result with group partition.

E SHARP FEATURES
As the polynomial quadratic approach typically smooths the pres-

ence of sharp features on the implicit surface, we adopt a similar
strategy employed by Ohtake et al. [2003] to tackle this concern.
This involves the automatic recognition of faces, edges, and cor-
ners among the feature particles with the finest layer radius. For
each feature particle in the finest layer, given the neighbor sample
particles {p}𝑘

𝑖=1 with normals {n}𝑘
𝑖=1 in its supporting radius, we

identify the local implicit surface of the feature particle as having
a sharp feature if min𝑖, 𝑗 (n𝑖 · n𝑗) < 𝜀1, where 𝜀1 is a user-defined
threshold that we set to 𝜀1 = 0.9 in our experiments. By recording
the two normals n1 and n2 of the minimal product, the sharp fea-
ture is identified as a corner if max𝑖 |n𝑖 · (n1 × n2) | > 𝜀2, where
𝜀2 is a threshold set to 0.7; otherwise, it is identified as an edge.

Fig. 25. Our sharp group par-
tition, with different colored
normals indicating different
groups.

We then partition the sample
particles within the radius of this
feature particle into two groups
for edges or three groups for
corners, using spherical Voronoi
subsets as illustrated in Figure
25. Each group is fitted to a poly-
nomial parameter. Non-smooth
implicit surfaces are generated
using intersections, as described
by Ricci [1973]. Fig. 26 shows the
comparison results. We delay ap-
plying the partition in the initial
stages of differentiable optimiza-
tion applications because the shape isn’t finalized. Such partitioning
could introduce discontinuities in surface normals or curvature,
harming the differentiable application. We postpone this step until
the final iterations when the shape approaches the target.

F NON-MANIFOLD FEATURES
Our moving particle representation can handle non-manifold

shapes such as unsigned distance functions and junctions. For the
unsigned distance function, converting the original signed function
Eq. (3) is straightforward using an absolute operation,

F (x) = |b(x − c)⊤𝛽 |. (26)

To solve the correct polynomial vector of the non-manifold shape,
we capitalize on the advantages offered by the group partitioning
method of sharp feature recognition and sample particles. Regarding
the junctions depicted in Fig. 27, where the normals of sample
particles may point in opposite directions on the junction edge
and corner, we adapt previous edge detection to recognize n𝑖 and
n𝑗 within the same group for unsigned distance implicit surface if
they exhibit nearly opposite directions,𝑚𝑖𝑛𝑖, 𝑗 (n𝑖 · n𝑗) < −𝜀1, and if
|p𝑖 −p𝑗 | < 0.01𝑟0, where 𝑟0 is the smallest radius of feature particles.
In polynomial approximation, for each group of sample particles,

we designate one sample particle’s normal as the principal direc-
tion for the group. Then, each sample particle within this group
exhibiting an opposite direction utilizes the opposite normal in Eq.
(3) and Eq. (6), and thus feature particles cloud approximate correct
unsigned distance value for non-manifold junctions.

Actual normals Normals we use

Fig. 27. unsigned distance represen-
tation principal sample orientation
scheme used on the non-manifold face.

We solely utilize Eq. 26
to represent unsigned dis-
tances, as illustrated in
Experiments 9.1.1, demon-
strating how our repre-
sentation can accommo-
date non-manifold junc-
tions if required. How-
ever, in other experiments,
such junctions are con-
sidered errors to be ad-
dressed. We will discuss
methods for detecting and rectifying non-manifold shapes in Sec.
7.3.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Geometric Representation
	4.1 Data Structure
	4.2 Geometric Fitting

	5 Adaptivity
	5.1 Feature Particle Reinitialization
	5.2 Hole Fixing

	6 Differentiation
	6.1 Gradient Flow

	7 Dynamic Interface
	7.1 Geometric Evolution
	7.2 Topological Transition
	7.3 Dynamic Adaptivity
	7.4 Resampling

	8 Implementation
	9 Experiments
	9.1 Direct SDF Reconstruction
	9.2 Differentiable SDF Optimization
	9.3 Inverse Rendering
	9.4 Explicit Velocity Evolution
	9.5 Ablation Study
	9.6 Runtime Performance

	10 Conclusions
	Acknowledgments
	References
	A Code
	B Training data
	C Weighted Least Square
	D Curvature Calculation on quadratic function
	E Sharp Features
	F Non-manifold Features

